Enhanced ELM Based Channel Estimation for RIS-Assisted OFDM Systems With Insufficient CP and Imperfect Hardware

نویسندگان

چکیده

Reconfigurable intelligent surface (RIS)-assisted orthogonal frequency division multiplexing (OFDM) systems have aroused extensive research interests due to the controllable communication environment and performance of combating multi-path interference. However, as premise RIS-assisted OFDM systems, accuracy channel estimation is severely degraded by increased possibility insufficient cyclic prefix (CP) produced extra cascaded channels RIS nonlinear distortion lead imperfect hardware. To address these issues, an enhanced extreme learning machine (ELM)-based (eELM-CE) proposed in this letter facilitate accurate estimation. Based on model-driven mode, least square (LS) employed highlight initial linear features for Then, according obtained features, ELM network constructed refine In particular, we start from perspective guiding it recognize feature, normalize data after activation function enhance ability identifying non-linear factors. Experiment results show that, compared with existing methods, method achieves a much lower normalized mean error (NMSE) given CP addition, simulation indicate that possesses robustness against parameter variations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

Improved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation

The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...

متن کامل

Robust channel estimation for the OFDM-based WLAN systems with imperfect synchronization

Asaneffective technique for combating multipath fading and for high data rate transmission over wireless channels, orthogonal frequency division multiplexing (OFDM) is extensively used in wireless local area network (WLAN) systems to support high-performance bandwidthefficientmultimedia services. In this paper, a robust channel estimation scheme is proposed for the OFDM-basedWLAN systems with i...

متن کامل

Hybrid pilots assisted channel estimation algorithm for MIMO-OFDM systems

A hybrid pilots assisted channel estimation algorithm for multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems under low signal-to-noise ratio (SNR) and arbitrary Doppler spread scenarios is proposed. Motivated by the dissatisfactory performance of the optimal pilots (OPs) designed under static channels over multiple OFDM symbols imposed by fast fading...

متن کامل

Enhanced Adaptive Channel Estimation Technique for MIMO-OFDM Wireless Systems

Multiple Input Multiple Output (MIMO) in combination with Orthogonal Frequency Division Multiplexing (OFDM) can provide spectrally efficient and ISI free communication. Channel estimation is of great importance in order to recover the signal at the receiver side. Therefore accurate channel state information is essential for proper detection and decoding in MIMO-OFDM wireless systems. To estimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Communications Letters

سال: 2022

ISSN: ['1558-2558', '1089-7798', '2373-7891']

DOI: https://doi.org/10.1109/lcomm.2021.3123736